Транспортная задача закрытая модель

Транспортная задача линейного программирования получила в настоящее время широкое распространение в теоретических обработках и практическом применении на транспорте и в промышленности.

Особенно важное значение она имеет в деле рационализации постановок важнейших видов промышленной и сельскохозяйственной продукции, а также оптимального планирования грузопотоков и работы различных видов транспорта. Кроме того, к задачам транспортного типа сводятся многие другие задачи линейного программирования - задачи о назначениях, сетевые, календарного планирования.

Цель заданной работы - освоить математическую постановку транспортной задачи линейного программирования. Транспортная задача является частным типом задачи линейного программирования и формулируется следующим образом. Имеется m пунктов отправления или пунктов производства А i …, А m , в которых сосредоточены запасы однородных продуктов в количестве a 1 , Имеется n пунктов назначения или пунктов потребления В 1 , Известны также транспортные расходы С ij , связанные с перевозкой единицы продукта из пункта A i в пункт В j , i 1, …, m; j 1, Требуется составить такой план перевозок откуда, куда и сколько единиц продукта везти , чтобы удовлетворить спрос всех пунктов потребления за счет реализации всего продукта, произведенного всеми пунктами производства, при минимальной общей стоимости всех перевозок.

Приведенная формулировка транспортной задачи называется замкнутой транспортной моделью. Пусть х ij - количество единиц продукта, поставляемого из пункта А i в пункт В j. Подлежащие минимизации суммарные затраты на перевозку продуктов из всех пунктов производства во все пункты потребления выражаются формулой:. Суммарное количество продукта, направляемого из каждого пункта отправления во все пункты назначения, должно быть равно запасу продукта в данном пункте.

Формально это означает, что. Суммарное количество груза, доставляемого в каждый пункт назначения из всех пунктов отправления, должно быть равно потребности. Это условие полного удовлетворения спроса:. Объемы перевозок - неотрицательные числа, так как перевозки из пунктов потребления в пункты производства исключены:. Транспортная задача сводится, таким образом, к минимизации суммарных затрат при выполнении условий полного удовлетворения спроса и равенства вывозимого количества продукта запасам его в пунктах отправления.

Очевидно, общее наличие груза у поставщиков равно , а общая потребность в грузе в пунктах назначения равна единице. Если общая потребность в грузе в пунктах назначения равна запасу груза в пунктах отправления, то есть В ряде случаев не требуется, чтобы весь произведенный продукт в каждом пункте производства был реализован.

В таких случаях баланс производства и потребления может быть нарушен:. Любая транспортная задача, у которой суммарный объем запасов совпадает с суммарным объемом потребностей, имеет решение. Закрытая модель транспортной задачи. Для доказательства теоремы необходимо показать, что при заданных условиях существует хотя бы один план задачи и линейная функция на множестве планов ограничена. Открытая модель транспортной задачи.

Транспортная задача, в которой суммарные запасы и потребности не совпадают, т. Для открытой модели может быть два случая:. Стоимость перевозки единицы груза как фиктивного потребителя, так и стоимость перевозки единицы груза от фиктивного поставщика полагают равными нулю, так как груз в обоих случаях не перевозится.

После преобразований задача принимает вид закрытой модели и решается обычном способом. При равных стоимостях перевозки единицы груза от поставщиков к фиктивному потребителю затраты на перевозку груза реальным потребителям минимальны, а фиктивному потребителю будет направлен груз от наименее выгодных поставщиков.

То же самое получаем и в отношении фиктивного поставщика. Прежде чем решать какую-нибудь транспортную задачу, необходимо сначала проверить, к какой модели она принадлежит, и только после этого составить таблицу для ее решения. Определение оптимального и опорного плана транспортной задачи. Как и при решении задачи линейного программирования, симплексным методом, определение оптимального плана транспортной задачи начинают с нахождения какого-нибудь ее опорного плана.

Для определения опорного плана существует несколько методов. Три из них - метод северно-западного угла, метод минимального элемента и метод аппроксимации Фогеля - рассмотрены ниже. При составлении первоначального опорного плана методом северо-западного угла стоимость перевозки единицы не учитывается, поэтому построенный план далек от оптимального, получение которого связано с большим объемом вычислительных работ.

Обычно рассмотренный метод используется при вычислениях с помощью ЭВМ. Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом.

Для определения оптимального плана транспортной задачи можно использовать изложенные выше методы. Однако ввиду исключительной практической важности этой задачи и специфики ее ограничений [каждое неизвестное входит лишь в два уравнения системы 2 и 3 и коэффициенты при неизвестных равны единице] для определения оптимального плана транспортной задачи разработаны специальные методы. Два из них - метод потенциалов и Венгерский метод - рассматриваются ниже. Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую и в клетку, которая ей соответствует, помещают меньшее из чисел и.

Затем из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.

Составить первоначальный опорный план методом минимального элемента для транспортной задачи вида:. Шестая перевозка осуществляется с пункта в пункт потребления так как без учета первого, второго столбца, первой, третьей и четвертой строки. При определении опорного плана транспортной задачи методом аппроксимации Фогеля находят разность по всем столбцам и по всем строкам между двумя записанными в них минимальными тарифами.

Эти разности записывают в специально отведенных для этого строке и столбце в таблице условий задачи. Среди указанных разностей выбирают минимальную. В строке или в столбце , которой данная разность соответствует, определяют минимальная стоимость. Если минимальная стоимость одинакова для нескольких клеток столбца строки , то для заполнения выбирают ту клетку, которая расположена в столбце строке , соответствующем наибольшей разности между двумя минимальными стоимостями, находящимися в данном столбце строке.

Здесь мы перенесли потребности в верхнюю строку для удобства построения плана. Рассмотрим задачу, приведенную для методов северо-западного угла и минимального элемента. Идея метода была высказана венгерским математиком Эгервари и состоит в следующем. Строится начальный план перевозок, не удовлетворяющий в общем случае всем условиям задачи из некоторых пунктов производства не весь продукт вывозится, потребность части пунктов потребления не полностью удовлетворена.

Далее осуществляется переход к новому плану, более близкому к оптимальному. Последовательное применение этого приема за конечное число итераций приводит к решению задачи. Алгоритм венгерского метода состоит из подготовительного этапа и из конечного числа итераций. На подготовительном этапе строится матрица X0 xij[0] m,n, элементы которой неотрицательны и удовлетворяют неравенствам:.

Если эти условия являются равенствами, то матрица Хo - решение транспортной задачи. Если среди условий имеются неравенства, то осуществляется переход к первой итерации.

На k-й итерации строится матрица Хk xij[0] m,n. Близость этой матрицы к решению задачи характеризует число Dk — суммарная невязка матрицы Хk:. В результате первой итерации строится матрица Хl, состоящая из неотрицательных элементов. При этом Dl D0. Если Dl 0, то Хl - оптимальное решение задачи.

Транспортная задача (практика) часть 1

Если Dl 0, то переходят к следующей итерации. Они проводятся до тех пор, пока Dk при некотором k не станет равным нулю. Соответствующая матрица Хk является решением транспортной задачи.

Венгерский метод наиболее эффективен при решении транспортных задач с целочисленными объемами производства и потребления. Достоинством венгерского метода является возможность оценивать близость результата каждой из итераций к оптимальному плану перевозок.

Это позволяет контролировать процесс вычислений и прекратить его при достижении определенных точностных показателей. Данное свойство существенно для задач большой размерности. Метод потенциалов является модификацией симплекс-метода решения задачи линейного программирования применительно к транспортной задаче. Он позволяет, отправляясь от некоторого допустимого решения, получить оптимальное решение за конечное число итераций.

Общая схема отдельной итерации такова. По допустимому решению каждому пункту задачи сопоставляется число, называемое его предварительным потенциалом.

Пунктам Аi соответствуют числа ui, пунктам Bj - числа vj. Они выбираются таким образом, чтобы их разность на k-й итерации была равна Сij - стоимости перевозки единицы продукции между пунктами Аi и Вj:. Если разность предварительных потенциалов для каждой пары пунктов Аi, Вj не превосходит Сij, то полученный план перевозок является решением задачи. В противном случае указывается способ получения нового допустимого плана, связанного с меньшими транспортными издержками.

За конечное число итераций находится оптимальный план задачи. Авиация и космонавтика Административное право Арбитражный процесс 23 Архитектура Астрология 4 Астрономия Банковское дело Безопасность жизнедеятельности Биографии Биология Биология и химия Биржевое дело 68 Ботаника и сельское хоз-во Бухгалтерский учет и аудит Валютные отношения 50 Ветеринария 50 Военная кафедра ГДЗ 2 География Геодезия 30 Геология Геополитика 43 Государство и право Гражданское право и процесс Делопроизводство 19 Деньги и кредит ЕГЭ Естествознание 96 Журналистика ЗНО 54 Зоология 34 Издательское дело и полиграфия Инвестиции Иностранный язык Информатика Информатика, программирование Исторические личности История История техники Кибернетика 64 Коммуникации и связь Компьютерные науки 60 Косметология 17 Краеведение и этнография Краткое содержание произведений Криминалистика Криминология 48 Криптология 3 Кулинария Культура и искусство Культурология Литература: Плохо Средне Хорошо Отлично.

Банк рефератов содержит более тысяч рефератов , курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.

Транспортная задача 5 Название: Транспортная задача 5 Раздел: Рефераты по информатике Тип: Постановка задачи и ее математическая модель3 2. Модели транспортной задачи7 2. Закрытая модель транспортной задачи7 2. Открытая модель транспортной задачи8 3. Определение оптимального и опорного плана транспортной задачи10 4. Методы определения первоначального опорного плана12 4.

Метод минимального элемента12 4. Метод аппроксимации Фогеля14 5. Методы определения оптимального плана16 5. Метод потенциалов17 Список использованной литературы19 Введение Транспортная задача линейного программирования получила в настоящее время широкое распространение в теоретических обработках и практическом применении на транспорте и в промышленности. Постановка задачи и ее математическая модель Транспортная задача является частным типом задачи линейного программирования и формулируется следующим образом.

Подлежащие минимизации суммарные затраты на перевозку продуктов из всех пунктов производства во все пункты потребления выражаются формулой: Формально это означает, что , i 1, …, m 2 Суммарное количество груза, доставляемого в каждый пункт назначения из всех пунктов отправления, должно быть равно потребности.

Это условие полного удовлетворения спроса: Обычно исходные данные записываются в виде таблицы 1. Выражаю благодарность администрации сайта! Сделай паузу, студент, вот повеселись: Кстати, анекдот взят с chatanekdotov. Где скачать еще рефератов? Кто еще хочет зарабатывать от рублей в день "Чистых Денег"? Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?



COPYRIGHT © 2016-2017 wealthmagician.com